Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.653
Filtrar
1.
Nat Commun ; 15(1): 2097, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453935

RESUMEN

Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.


Asunto(s)
Termotolerancia , Triticum , Triticum/fisiología , Termotolerancia/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Respuesta al Choque Térmico/genética , China
2.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538058

RESUMEN

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Asunto(s)
Diosgenina , Neoplasias Ováricas , Fosfohidrolasa PTEN , Femenino , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Diosgenina/farmacología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Regulación hacia Arriba
3.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452087

RESUMEN

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Asunto(s)
Brasinoesteroides , Grano Comestible , Oryza , Proteínas de Plantas , Brasinoesteroides/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38341666

RESUMEN

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3ß). GSK3α and GSK3ß are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3ß) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Albúmina Sérica Bovina , Capacitación Espermática , Animales , Femenino , Masculino , Ratones , Calcio/metabolismo , AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mamíferos , Fosforilación , Semen/metabolismo , Albúmina Sérica Bovina/farmacología , Albúmina Sérica Bovina/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo
5.
Acta Neuropathol ; 147(1): 41, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363426

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Enfermedades Neurodegenerativas/patología , Cinesinas/genética , Cinesinas/metabolismo , Neuronas Motoras/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mutación/genética
6.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256072

RESUMEN

Brassinosteroids (BRs) are a class of plant steroid hormones that are essential for plant growth and development. BRs control important agronomic traits and responses to abiotic stresses. Through the signaling pathway, BRs control the expression of thousands of genes, resulting in a variety of biological responses. The key effectors of the BR pathway are two transcription factors (TFs): BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMSSUPPRESSOR 1 (BES1). Both TFs are phosphorylated and inactivated by the Glycogen synthase kinase 3 BRASSINOSTEROID INSENSITIVE2 (BIN2), which acts as a negative regulator of the BR pathway. In our study, we describe the functional characteristics of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. We generated mutant lines of HvGSK1.1 using CRISPR/Cas9 genome editing technology. Next Generation Sequencing (NGS) of the edited region of the HvGSK1.1 showed a wide variety of mutations. Most of the changes (frameshift, premature stop codon, and translation termination) resulted in the knock-out of the target gene. The molecular and phenotypic characteristics of the mutant lines showed that the knock-out mutation of HvGSK1.1 improved plant growth performance under salt stress conditions and increased the thousand kernel weight of the plants grown under normal conditions. The inactivation of HvGSK1.1 enhanced BR-dependent signaling, as indicated by the results of the leaf inclination assay in the edited lines. The plant traits under investigation are consistent with those known to be regulated by BRs. These results, together with studies of other GSK3 gene members in other plant species, suggest that targeted editing of these genes may be useful in creating plants with improved agricultural traits.


Asunto(s)
Brasinoesteroides , Hordeum , Brasinoesteroides/farmacología , Hordeum/genética , Glucógeno Sintasa Quinasa 3/genética , Tolerancia a la Sal/genética , Transducción de Señal , Reguladores del Crecimiento de las Plantas
7.
Nat Commun ; 15(1): 668, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253551

RESUMEN

Human naïve pluripotent stem cells (hnPSCs) can generate integrated models of blastocysts termed blastoids upon switch to inductive medium. However, the underlying mechanisms remain obscure. Here we report that self-renewing hnPSCs spontaneously and efficiently give rise to blastoids upon three dimensional (3D) suspension culture. The spontaneous blastoids mimic early stage human blastocysts in terms of structure, size, and transcriptome characteristics and are capable of progressing to post-implantation stages. This property is conferred by the glycogen synthase kinase-3 (GSK3) signalling inhibitor IM-12 present in 5iLAF self-renewing medium. IM-12 upregulates oxidative phosphorylation-associated genes that underly the capacity of hnPSCs to generate blastoids spontaneously. Starting from day one of self-organization, hnPSCs at the boundary of all 3D aggregates dedifferentiate into E5 embryo-like intermediates. Intermediates co-express SOX2/OCT4 and GATA6 and by day 3 specify trophoblast fate, which coincides with cavity and blastoid formation. In summary, spontaneous blastoid formation results from 3D culture triggering dedifferentiation of hnPSCs into earlier embryo-like intermediates which are then competent to segregate blastocyst fates.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Células Madre Pluripotentes , Humanos , Glucógeno Sintasa Quinasa 3/genética , Blastocisto , Implantación del Embrión , Embrión de Mamíferos
8.
Int J Biol Macromol ; 256(Pt 1): 128262, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989431

RESUMEN

This study focused on GSK-3ß, a critical serine/threonine kinase with diverse cellular functions. However, there is limited understanding of the impact of non-synonymous single nucleotide polymorphisms (nsSNPs) on its structure and function. Through an exhaustive in-silico investigation 12 harmful nsSNPs were predicted from a pool of 172 acquired from the NCBI dbSNP database using 12 established tools that detects deleterious SNPs. Consistently, these nsSNPs were discovered in locations with high levels of conservation. Notably, the three harmful nsSNPs F67C, A83T, and T138I were situated in the active/binding site of GSK-3ß, which may affect the protein's capacity to bind to substrates and other proteins. Molecular dynamics simulations revealed that the F67C and T138I mutants had stable structures, indicating rigidness, whereas the A83T mutant was unstable. Analysis of secondary structures revealed different modifications in all mutant forms, which may affect the stability, functioning, and interactions of the protein. These mutations appear to alter the structural dynamics of GSK-3ß, which may have functional ramifications, such as the formation of novel secondary structures and variations in coil-to-helix transitions. In conclusion, this study illuminates the possible structural and functional ramifications of these GSK-3 nsSNPs, revealing how protein compactness, stiffness, and interactions may affect biological activities.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Polimorfismo de Nucleótido Simple , Glucógeno Sintasa Quinasa 3 beta/genética , Polimorfismo de Nucleótido Simple/genética , Glucógeno Sintasa Quinasa 3/genética , Simulación de Dinámica Molecular , Cicatrización de Heridas , Biología Computacional
9.
Plant J ; 117(3): 747-765, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926922

RESUMEN

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Triazoles , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955925

RESUMEN

The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.


Asunto(s)
Proteínas de Drosophila , Drosophila , Glucógeno Sintasa Quinasa 3 , Cinesinas , Proteínas de la Membrana , Animales , Centrosoma , Proteínas del Citoesqueleto , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3/genética , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Transducción de Señal , Proteínas de la Membrana/genética
11.
PeerJ ; 11: e16635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107562

RESUMEN

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3ß isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3ß is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3ß substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3ß. GSK-3ß is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3ß. Despite these advancements, the therapeutic significance of GSK-3ß as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3ß in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/genética , Encéfalo , Carcinogénesis/genética , Transformación Celular Neoplásica , Mamíferos
12.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958485

RESUMEN

Since its initial purification and characterization as an enzyme negatively regulating glycogen synthase activity [...].


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Transducción de Señal , Glucógeno Sintasa Quinasa 3/genética , Apoptosis , Fosforilación
13.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686063

RESUMEN

Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neoplasias , Aminoácidos , Asparagina , Glucógeno Sintasa Quinasa 3/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas , Proteínas Ribosómicas/genética , Humanos
14.
J Biol Chem ; 299(8): 104991, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392853

RESUMEN

Increasing evidence supports a role for inflammation in the early development and progression of retinal complications caused by diabetes. We recently demonstrated that the stress response protein regulated in development and DNA damage response 1 (REDD1) promotes diabetes-induced retinal inflammation by sustaining canonical activation of nuclear transcription factor, NF-κB. The studies here were designed to identify signaling events whereby REDD1 promotes NF-κB activation in the retina of diabetic mice. We observed increased REDD1 expression in the retina of mice after 16 weeks of streptozotocin (STZ)-induced diabetes and found that REDD1 was essential for diabetes to suppress inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at S9. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented dephosphorylation of GSK3ß and increased NF-κB activation in response to hyperglycemic conditions. Expression of a constitutively active GSK3ß variant restored NF-κB activation in cells deficient for REDD1. In cells exposed to hyperglycemic conditions, GSK3ß knockdown inhibited NF-κB activation and proinflammatory cytokine expression by preventing inhibitor of κB kinase complex autophosphorylation and inhibitor of κB degradation. In both the retina of STZ-diabetic mice and in Müller cells exposed to hyperglycemic conditions, GSK3 inhibition reduced NF-κB activity and prevented an increase in proinflammatory cytokine expression. In contrast with STZ-diabetic mice receiving a vehicle control, macrophage infiltration was not observed in the retina of STZ-diabetic mice treated with GSK3 inhibitor. Collectively, the findings support a model wherein diabetes enhances REDD1-dependent activation of GSK3ß to promote canonical NF-κB signaling and the development of retinal inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Humanos , Masculino , Ratones , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperglucemia/metabolismo , Inflamación/genética , Inflamación/metabolismo , FN-kappa B/metabolismo , Retina/metabolismo
15.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445828

RESUMEN

Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3ß-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3ß-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3ß-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3/genética , Músculos/metabolismo , ARN/metabolismo
16.
Plant Physiol ; 193(2): 1580-1596, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37335918

RESUMEN

Brassinosteroids play an essential role in promoting skotomorphogenesis, yet the underlying mechanisms remain unknown. Here we report that a plant-specific BLISTER (BLI) protein functions as a positive regulator of both BR signaling and skotomorphogenesis in Arabidopsis (Arabidopsis thaliana). We found that the glycogen synthase kinase 3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE2 interacts with and phosphorylates BLI at 4 phosphorylation sites (Ser70, Ser146, Thr256, and Ser267) for degradation; in turn, BR inhibits degradation of BLI. Specifically, BLI cooperates with the BRASSINAZOLE RESISTANT1 (BZR1) transcription factor to facilitate the transcriptional activation of BR-responsive genes. Genetic analyses indicated that BLI is essentially required for BZR1-mediated hypocotyl elongation in the dark. Intriguingly, we reveal that BLI and BZR1 orchestrate the transcriptional expression of gibberellin (GA) biosynthetic genes to promote the production of bioactive GAs. Our results demonstrate that BLI acts as an essential regulator of Arabidopsis skotomorphogenesis by promoting BR signaling and GA biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosforilación , Glucógeno Sintasa Quinasa 3/genética , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
17.
Am J Med Genet A ; 191(7): 1878-1888, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186330

RESUMEN

Aymé-Gripp syndrome is an autosomal dominant multisystem disorder. The major clinical features of this syndrome include congenital cataracts, sensorineural hearing loss, intellectual disability, and a distinctive flat facial appearance. MAF has been identified as a causative gene of the syndrome, and heterozygous variants owing to impairment in glycogen synthase kinase 3 (GSK3)-mediated MAF phosphorylation shows related disorders. However, the underlying mechanisms of these types of disorders in affected individuals remain poorly understood. To explore the underlying mechanisms and discover new phenotypes, a murine model with a Maf mutation on a GSK3 phosphorylation motif, p.Thr58Ile, was generated using CRISPR-Cas9 gene editing. This is a homologous mutation to that in human patients. Our murine model exhibited similar phenotypes to those in humans, such as lens abnormalities, short stature, growth retardation, and abnormal skull morphology. The murine model showed decreased brain volume and malocclusion. Considering the sequencing and genotyping data, our models were successfully generated for the first time (to the best of our knowledge). Therefore, this study offers new and unique functional insights into human and murine MAF and novel clinical values of MAF pathogenic variants associated with changes in the functions of several organs based on a viable murine model.


Asunto(s)
Catarata , Pérdida Auditiva Sensorineural , Discapacidad Intelectual , Humanos , Animales , Ratones , Glucógeno Sintasa Quinasa 3/genética , Modelos Animales de Enfermedad , Mutación , Pérdida Auditiva Sensorineural/genética , Discapacidad Intelectual/genética , Síndrome , Catarata/patología
18.
Vet Parasitol ; 318: 109937, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37116347

RESUMEN

In the life cycle of Dermanyssus gallinae, the embryo is a developmental stage that does not require blood meals, but needs glucose to produce adenosine triphosphate (ATP) through glycolysis or oxidative phosphorylation, providing energy for embryonic development. Glycogen synthase kinase 3 (GSK3), belonging to the serine/threonine kinase family, is a key enzyme involved in glycogen metabolism in many eukaryotes, but not be described in D. gallinae. The present study was conducted to explore the role of Dg-GSK3 in the embryogenesis of D. gallinae. The results of qPCR showed that Dg-GSK3 mRNA was expressed in different development stages of D. gallinae embryos. RNA interference (RNAi) was performed on the female mites and eggs by immersion, and it was found that lowering GSK3 expression level could significantly decrease the female egg laying rate and egg hatching rate (P < 0.05). Some eggs became shrunken and shriveled in appearance. The fecundity of female D. gallinae obtained from the rDg-GSK3-immunized group of chickens (2.56 ± 0.35 eggs per mite, P < 0.0001) decreased significantly from that of the control group (3.49 ± 0.35). The oviposition rate of rDg-GSK3-immunized group (75.94 ± 7.28 %, P = 0.0003)was significantly lower that of the control group (89.69 ± 2.63 %). In conclusion, Dg-GSK3 is a crucial gene during the embryogenesis of D. gallinae, which can affect both the female fecundity and the egg hatching, which help us understand the function of GSK3 gene in the embryogenesis of mites.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Enfermedades de las Aves de Corral , Animales , Femenino , Infestaciones por Ácaros/veterinaria , Glucógeno Sintasa , Glucógeno Sintasa Quinasa 3/genética , Pollos , Óvulo , Ácaros/genética , Desarrollo Embrionario
19.
Plant Cell ; 35(6): 1970-1983, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36945740

RESUMEN

The utilization of stabilized DELLA proteins Rht-B1b and Rht-D1b was crucial for increasing wheat (Triticum aestivum) productivity during the Green Revolution. However, the underlying mechanisms remain to be clarified. Here, we cloned a gain-of-function allele of the GSK3/SHAGGY-like kinase-encoding gene GSK3 by characterizing a dwarf wheat mutant. Furthermore, we determined that GSK3 interacts with and phosphorylates the Green Revolution protein Rht-B1b to promote it to reduce plant height in wheat. Specifically, phosphorylation by GSK3 may enhance the activity and stability of Rht-B1b, allowing it to inhibit the activities of its target transcription factors. Taken together, we reveal a positive regulatory mechanism for the Green Revolution protein Rht-B1b by GSK3, which might have contributed to the Green Revolution in wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Alelos
20.
Microbiol Spectr ; 11(3): e0523522, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995259

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) is a widely distributed multifunctional serine/threonine kinase. In mammals, GSK3ß regulates important life activities such as proinflammatory response, anti-inflammatory response, immunity, and cancer development. However, the biological functions of chicken GSK3ß (chGSK3ß) are still unknown. In the present study, the full-length cDNA of chGSK3ß was first cloned and analyzed. Absolute quantification of chicken chGSK3ß in 1-day-old specific-pathogen-free birds has shown that it is widely expressed in all tissues, with the highest level in brain and the lowest level in pancreas. Overexpression of chGSK3ß in DF-1 cells significantly decreased the gene expression levels of interferon beta (IFN-ß), IFN regulatory factor 7 (IRF7), Toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5), MX-1, protein kinase R (PKR), and oligoadenylate synthase-like (OASL), while promoting the replication of avian leukosis virus subgroup J (ALV-J). Conversely, levels of most of the genes detected in this study were increased when chGSK3ß expression was knocked down using small interfering RNA (siRNA), which also inhibited the replication of ALV-J. These results suggest that chGSK3ß plays an important role in the antiviral innate immune response in DF-1 cells, and it will be valuable to carry out further studies on the biological functions of chGSK3ß. IMPORTANCE GSK3ß regulates many life activities in mammals. Recent studies revealed that chGSK3ß was involved in regulating antiviral innate immunity in DF-1 cells and also could positively regulate ALV-J replication. These results provide new insights into the biofunction of chGSK3ß and the virus-host interactions of ALV-J. In addition, this study provides a basis for further research on the function of GSK3 in poultry.


Asunto(s)
Virus de la Leucosis Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Virus de la Leucosis Aviar/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3/genética , Inmunidad Innata , Antivirales , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...